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Shear layers driven by turbulent plumes
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ACT 0200, Australia

(Received 12 March 1998 and in revised form 14 October 2000)

A turbulent plume from a continuous source of buoyancy in a long tank is shown to
generate a series of quasi-steady counterflowing horizontal shear layers throughout
the tank. Both the horizontal flow velocity and the depth of the shear layers are
observed to decrease with distance above/below the plume outflow. The shear layers
are supported by the stable density stratification produced by the plume and are
superimposed on the vertical advection and entrainment inflow that make up the
so-called ‘filling box’ circulation. Thus, at some depths, the surrounding water flows
away from the plume instead of being entrained, although we see no evidence of
‘detrainment’ of dense plume water. Given the stratification produced by the plume
at large times, the timescale for the velocity structure to adjust to changes in forcing
is proportional to the time for long internal gravity waves to travel the length of the
tank. The shear layers are interpreted in terms of internal normal modes that are
excited by, and which in turn determine, the horizontal plume outflow. The sixth and
seventh baroclinic modes typically dominate because at the level of the plume outflow
their phase speed is approximately equal and opposite to the vertical advection in
the ‘filling box’. Also, the approximate balance between phase speed and advection
is found to hold throughout the tank, resulting in the observed quasi-steady flow
structure. Viscosity causes the horizontal velocity in the shear layers to decrease with
distance above/below the plume outflow, and is thought to be responsible for a
low-frequency oscillation in the flow structure that is observed during experiments.

1. Introduction
Most studies of turbulent buoyant plumes have focused on the plume flow itself,

with relatively little attention being paid to associated motions in the fluid surrounding
the plume. Morton, Taylor & Turner (1956) first formulated a model for plumes based
on Taylor’s entrainment hypothesis (Turner 1997) and quantified the radius, velocity
and density of the plume as functions of vertical distance from the source. They also
determined the effect a stratified environment has on the height reached by a rising
plume. Baines & Turner (1969) noted that, in this description, it is implicitly assumed
that the environment is infinite so that the density distribution can be specified in
advance and does not change during the period of interest. However, when a plume
falls into surroundings of finite volume, such as a laboratory tank or ocean basin,
the plume modifies its environment and the problem becomes time-dependent. Baines
& Turner (1969) gave solutions for the large-time steady-state flow in which the
outflow from a descending plume generates a relatively slow upwards motion in the
environment and establishes a stable stratification. Entrainment into the plume was
assumed to draw water towards the plume at all depths above the outflow at a rate
given by the ‘entrainment assumption’. The outflow layer from the plume source at the
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bottom (or top in the case of a less dense plume) has been found to occupy a quarter
of the water depth (Manins 1979). The evolution of the stratification has also been
studied by Germeles (1975) and Worster & Huppert (1982). This ‘filling box’ model
with various modifications has since been employed in many studies including the
filling of containers of liquefied natural gas (Germeles 1975), turbulent flows down
sloping boundaries in the oceans (Killworth 1977), the effects of time-dependent
plume fluxes on production of ocean bottom waters (Killworth & Turner 1982),
development of stratification in magma chambers (Turner 1980) and ventilation in
buildings (Cooper & Linden 1966; Linden & Cooper 1996).

The ‘filling box’ process has generally been studied in boxes having lengths and
widths comparable to the water depth, and the theoretical analysis has assumed
motions outside the plume to be small. In this paper, we report experiments which
show that in long tanks a series of strong counterflowing shear layers is established
in the stratification produced by the ‘filling box’ mechanism. We present evidence
that the layers are produced by internal gravity wave normal modes excited by the
plume outflow. They are similar in nature to columnar modes generated by internal
intrusions into density gradients (Manins 1976) or the slow horizontal motion of
obstacles in density gradients (Bretherton 1967). In § 2, we recall the theoretical
velocities and stratification given by the ‘filling box’ solution of Baines & Turner
(1969). Our experiments are described in § 3 and our observations and results are
given in § 4. Comparisons with theoretical solutions for the normal modes and with
other systems that show related flow structures are given in § 5 followed by conclusions
in § 6.

2. The ‘filling box’ solution
The analytical solutions of Baines & Turner (1969) predicting the properties of a

buoyant plume and the density stratification produced in a finite environment are
reproduced here. The reader is referred to Baines & Turner (1969) for full details, but
we will need some of the analytical results for comparison with our observations and
for calculation of the baroclinic normal modes.

For the ‘filling box’ analysis we assume that buoyancy-driven convection is the
dominant transport mechanism in the plume, whereas, far away from the plume, the
only motions are those of passive advection. Manins (1979) has noted that in boxes
of small aspect ratio (length/depth < 1.2) an inertial overturning motion is set up by
the plume which mixes the environment water from top to bottom. We consider only
much longer boxes. We also assume that the smallest horizontal dimension of the
tank is larger than the diameter of the plume at the bottom so that the plume does
not interact with the sidewalls of the tank.

During its descent, the dense plume entrains surrounding water and therefore
increases in radius and decreases in density. The first plume water to reach the bottom
spreads in an outflow layer, the top of which forms the ‘first front’ (a discontinuity
in density separating the overlying homogeneous water from water that has passed
through the plume). At later times, the plume entrains some of the dense water
from below the first front, making the outflow progressively denser. This generates
a vertical advection throughout the environment; the first front is therefore lifted
upwards and a stable stratification is established.

Let ρp, R and W be the density, radius and vertical (downward) velocity of the
plume, respectively, ρe the density of the surrounding water, ρr a reference density
(taken to be that of the environment water at the source level) and V the vertical
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velocity in the environment, with t the time and y the vertical coordinate. We assume
a top-hat profile in which the plume properties are constant across a horizontal
cross-section. The equations representing the conservation of volume, momentum and
mass deficiency are

∂

∂y
(πR2W ) = 2πERW,

∂

∂y
(πR2W 2ρp) = πR2g(ρp − ρe),

∂

∂y
[πR2W (ρp − ρr)] = 2πERW (ρe − ρr),


(1)

while equations representing conservation of volume and density in the environment
are

AV = −πR2W,

∂

∂t

(
g
ρe − ρr
ρr

)
= V

∂

∂y

(
g
ρe − ρr
ρr

)
.

 (2)

Here, E is the experimentally determined entrainment coefficient (Turner 1986), g is
the acceleration due to gravity and A is the horizontal cross-sectional area of the box.

The non-dimensionalization scheme employed to reduce equations (1) and (2) to
the simplest form for analysis is

y = Hζ, t = 2−4/3E−4/3π−2/3AH−2/3F−1/3τ,

R = 2EHr, W = 2−2/3E−2/3π−1/3H−1/3F1/3w,

g
ρp − ρr
ρr

= 2−4/3E−4/3π−2/3H−5/3F2/3fp,

g
ρe − ρr
ρr

= 2−4/3E−4/3π−2/3H−5/3F2/3fe,

V = 24/3E4/3π2/3H5/3F1/3A−1ν,


(3)

where H is the effective height of the buoyancy source (see Baines & Turner 1969)
and F = πR2Wg(ρp − ρe)/ρr is the buoyancy flux from the source at y = 0.

After using (3) to scale (1) and (2), we obtain the same dimensionless equations that
Baines & Turner (1969) solved. They found a power series solution for asymptotically
large times when the plume radius, vertical velocity and density anomaly relative
to the environment no longer vary with time at a given depth, but the plume and
environment densities increase linearly in time at all depths. Taking a (virtual) point
source at ζ = 0, the solution (to three terms) is

r2w (= −ν) = 0.460ζ5/3 − 0.0588ζ8/3 − 0.0100ζ11/3, (4a)

rw = 0.766ζ2/3 − 0.157ζ5/3 − 0.0366ζ8/3, (4b)

fe = −ζ−2/3(3.27− 0.837ζ − 0.0623ζ2) + c, (4c)

fp = fe + (ζ − 1)/ν. (4d)

Equation (4c) describes the functional dependence of the environment buoyancy fe
on depth and since fe depends on how much buoyancy has been added to the system,
the equation involves a term c that is linearly dependent on τ. The dependence on τ
can be eliminated if we consider f∗e (ζ) = fe(τ, ζ)− fe(τ)ζ=1, that is, a buoyancy deficit
compared to the bottom that gives f∗e = 0 at ζ = 1. Plots of the plume properties
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Figure 1. The theoretical solution in the asymptotic case given by (4): (a) plume radius r and
vertical velocity w and (b) plume buoyancy fp and environment buoyancy f∗e relative to the bottom
of the tank. As ζ → 0, fp →∞ and f∗e → −∞.

given by (4) and f∗e are shown in figure 1. Baines & Turner (1969) also described
experiments that confirm these theoretical solutions.

In the solution (equation (4)), the entrainment volume per unit depth into the
plume is assumed to be 2πREW at all depths. For an axisymmetric plume far from
all sidewalls, this provides us with the horizontal velocity directed radially into the
plume. In the experiments reported below, the plume is also placed near one end
of a long channel in order to constrain the flow in the environment far from the
plume to be two-dimensional. (Experiments indicate that the flow in the environment
is approximately two-dimensional at a distance of about two plume radii from the
axis of the plume.) We assume that the entrained water is sourced evenly across the
horizontal cross-section of the tank so that the horizontal volume transport increases
linearly from zero at the end of the tank opposite the plume to 2πREW at the edge
of the plume. Thus, if B and L are the width and length of the tank, respectively,
and x the distance from the plume, then the horizontal velocity Ue attributed to
entrainment is

Ue = −2πERW
(L− x)

BL
. (5)

(The negative sign indicates that entrainment velocities are directed towards the
plume.) The scaling between Ue and its dimensionless equivalent ue = −rw can be
calculated as

Ue = 24/3π2/3E4/3F1/3H2/3B−1L−1(L− x)ue. (6)

The dimensionless inflow velocity ue is plotted in figure 2.
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Figure 2. The far-field horizontal velocity given by (6) and induced by entrainment into a plume
under the assumption of a dynamically passive environment in the ‘filling box’ model. Negative
values of ue indicate velocity towards the plume.

3. Experiments
In the experiments, a dense salt solution was released at a steady rate through

a small nozzle protruding just below the free surface of a tank of water. The
nozzle, about 6 mm in diameter, was wide enough to ensure that the velocity and
momentum of the released water was small, so that the source approximated a
pure buoyancy source. The nozzle was positioned near one end of the tank and
equidistant from three sidewalls. A peristaltic pump maintained a constant flux of
salt water through the nozzle. A typical flow rate used in the experiments was
3.85× 10−7 m3 s−1(= 0.385 cm3 s−1) with salt solution densities ranging from 1090 to
1180 kg m−3.

Two tanks were used. The first was 1.1 m long, 0.3 m wide and 0.24 m deep whereas
the second was 2.0 m long, 0.2 m wide and 0.4 m deep. The nozzles were positioned
in the vertical to give effective depths of 0.16 m and 0.235 m in both tanks and,
additionally, 0.3 m and 0.38 m in the larger tank.

Horizontal velocities far from the plume were measured by dropping crystals of
potassium permanganate into the tank. As the crystals descended to the bottom,
they dissolved to produce a vertical dye line. Horizontal velocities were calculated
by measuring the distortion of this dye line in a short period of time. The short
time interval was crucial for minimizing both the influence of the endwalls and the
errors due to simultaneous upwelling of the water. The movement of the dye line was
recorded on video. A grid of lines with 1 cm spacing on the front of the tank allowed
measurements of dye displacement correct to 0.5 cm from the video recording.

Conductivity profiles and time records at a fixed point were measured by a four-
wire conductivity probe (MSCI 5201, Precision Measurement Engineering, USA).
Simultaneous thermistor measurements (GB38P12, Fenwal Electronics, USA) pro-
vided a temperature correction for the conversion of conductivity to density using
the equations of Ruddick & Shirtcliffe (1979). Fractional density changes of less than
10−7 could be detected.

We conducted 12 experiments, all starting with tanks containing homogeneous
fluid. The parameters for these experiments are given in table 1 along with three
timescales: N−1 (where N−1 is the depth-averaged inverse buoyancy frequency at
large times), tw = N−1(L/H), the timescale for long waves to travel the length of the
tank, and ta = 33.7A/H2/3F1/3, the time for vertical advection of water in the ‘filling
box’ environment. The advection time is derived from the non-dimensionalization for t
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used in (3), and is the time predicted by the theory for the first front to reach ζ = 0.1.
Some of the 12 experiments were used to reveal the horizontal velocity structure at
large times; these will be discussed in § 4.1. All experiments were used to measure
the long period oscillations in the density at a fixed point in the tank and also the
development of shear layers in a pre-stratified tank. This was accomplished by running
the plume for up to 4 h. Within the first hour, the first front approached the level of the
source and the density profile approached the asymptotic shape. Conductivity profiles
at a fixed value of x were taken both before and after the asymptotic state had been
reached. We will see in § 4.2 that oscillations in the conductivity profiles correspond
to changes in the horizontal velocity structure. After conductivity profiles had been
taken, the plume was turned off and motions in the stratified tank were allowed to
settle to rest. The plume was then restarted and the subsequent redevelopment of the
horizontal velocity profile monitored (§ 4.3).

The entrainment constant E was measured by comparing the progress of the first
front with the analytical solution of Baines & Turner (1969). The value that we use is
E = 0.129. Since the entrainment constants for ‘top-hat’ and Gaussian profiles differ
by a factor of

√
2 (see Turner 1973, 1986), our entrainment constant corresponds to

0.0912 for a Gaussian profile, and is therefore consistent with those used in other
studies.

4. Results
4.1. The circulation

The most striking observation was that the stratified environment produced by a
turbulent plume supported a strong and persistent series of layers. These layers
appeared as dominant features in the profiles of horizontal velocity, as seen in figure
3(a), but corresponded to extremely small perturbations in the density gradient. Hence,
we call these ‘shear layers’ in order to distinguish them from density layering. Figure
4 shows characteristic horizontal velocity profiles halfway along the tank in three
experiments. The measured velocities are normalized using the scale given in (6) for
the entrainment velocity ue. At the bottom of the tank, the outflow-layer thickness
was approximately a quarter of the tank depth. Immediately above the outflow layer,
there was a layer of similar thickness moving towards the plume. In the upper half
of the tank there were several layers. Both vertical scales and the magnitudes of the
horizontal velocities in the shear layers generally decreased with height. The local
velocity extrema at the centre of the third and fifth layers from the bottom were
almost zero, corresponding to near stationary water. Between these two layers, there
was a region of moderate flow towards the plume. At the third velocity extremum
(ζ = 0.3–0.4), the velocity oscillated slowly from positive to negative, so that the flow
was at times away from the plume. A streak photograph (figure 3b) not only shows
the shear layers, but also indicates that the horizontal velocities heading towards the
plume decrease with increasing horizontal distance from the plume. Eddies, which are
the result of residual turbulence in the plume outflow, are also seen in the photograph.

Another view of this previously unexpected velocity structure is obtained by sub-
tracting the predicted horizontal inflow velocity due to entrainment from the measured
velocity (figure 4b). Layers can be defined as those regions of the flow lying between
zero crossings in the vertical profile of the horizontal velocity difference u− ue.

At the end of the tank away from the plume, we also observed a concentrated
upward flow from the bottom outflow layer that fed the return flow towards the plume
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Results
Experiment parameters

Timescales Time for Oscillation Predicted
Buoyancy layers to period of vertical

Tank dimensions flux N−1 N−1(L/H) 33.7A/H2/3F1/3 develop layers wavenumber
Number L× B ×H (m) (10−7m4 s−3) (s) tw(s) ta(s) te(s) to(s) m(0)H

1 2.0× 0.2× 0.16 6.81 2.05 25.6 5200 300± 60 1620± 120 8.8
2 2.0× 0.2× 0.235 6.81 3.42 29.1 4030 360± 60 2040± 120 7.2
3 2.0× 0.2× 0.30 6.81 4.74 31.6 3420 420± 60 2280± 60 6.4
4 2.0× 0.2× 0.38 6.81 6.50 34.2 2910 480± 60 2640± 60 5.7
5 2.0× 0.2× 0.16 3.34 2.60 32.5 6600 360± 60 2220± 60 8.8
6 2.0× 0.2× 0.235 3.34 4.34 36.9 5100 480± 60 2010± 90 7.2
7 2.0× 0.2× 0.30 3.34 6.01 40.1 4330 450± 60 2280± 60 6.4
8 2.0× 0.2× 0.38 3.34 8.24 43.4 3700 600± 60 2280± 60 5.7
9 1.1× 0.3× 0.16 6.81 2.05 14.1 4290 150± 30 2400± 300 10.7

10 1.1× 0.3× 0.235 6.81 3.42 16.0 3320 180± 30 2430± 270 8.8
11 1.1× 0.3× 0.16 3.34 2.60 17.9 5440 180± 30 2190± 210 10.7
12 1.1× 0.3× 0.235 3.34 4.34 20.3 4210 210± 30 2130± 60 8.8

Table 1. Parameters and results for the experiments.
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(b)

(a)

Figure 3. (a) A photograph of a typical experiment (in a 1.1 m tank). Potassium permanganate
crystals dropped into the tank left an initially vertical line of dissolved dye in the water. As this
dye line moved passively in the water, it revealed the shear layers generated by the plume outflow.
The tracer was also used to measure the horizontal velocities. (b) A streak photograph of a typical
experiment.

in the second layer. This existed because the uniform vertical advection distributed
over the area of the box at the top of the outflow layer was insufficient to accommodate
the total volume flux supplied to the layer by the turbulent plume. The same process
continued to operate to some extent above the second shear layer with a tendency
for a part of the horizontal volume flux in each layer to be directed by the endwalls
to a return flow in the next layer.

It should be emphasized that parcels of water did not necessarily traverse the tank
from end to end during their residence time in each layer. The distributed vertical
advection of water ‘short-circuited’ the paths. For example, there was little horizontal
flow (relative to the tank) in the third layer, yet a thin horizontal layer of dyed water
was seen to migrate upwards through this shear layer. Thus, those parcels of water
which were not entrained into the plume migrated upwards through the series of
shear layers, experiencing an oscillatory horizontal velocity.

4.2. Long period oscillations

At large times after the stratification had developed, the system did not reach a steady
state, but instead continued to support slow oscillations. As the first front approached
ζ = 0.1, the number of shear layers oscillated between four and five. When the first
front had later reached ζ = 0.05, the number of layers oscillated between five and
six. The maximum number of layers typically observed was six, however, seven layers
were observed in a rare instance. The horizontal velocity profiles obtained during a
fluctuation from five to four layers and back are shown in figure 5. The velocities are
again normalized using the scale given in (6).

Velocity fluctuations (corresponding to the changing number of layers), were most
visible in the region 0.15 < ζ < 0.45. At these depths, the positions of the extrema in
horizontal velocity shifted, resulting in large velocity fluctuations at a given depth.
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Figure 4. Sample horizontal velocity profiles measured halfway along the tank in three experiments
listed in table 1: ——–, experiment 10; −−−−, experiment 4; -- -- -- --, experiment 2. (a) The measured
velocities u contrasted with - - -, the predicted two-dimensional entrainment velocity ue relative to
the tank and (b) the difference u− ue. The velocities are made dimensionless using the scale in (6)
for the entrainment velocity ue. Negative velocities are towards the plume. Note that the velocity
profile for experiment 10 was taken after 90 min had elapsed and is therefore different to those
profiles shown in figure 5.

Indeed, in some cases, the velocity at a given depth reversed and fluctuated between
two values that were close to local velocity maxima of opposite signs.

The fluctuations in velocity were accompanied by oscillations in the density field.
In the absence of internal waves and shear layers, the ‘filling box’ solution predicts
that the density increases linearly with time at a fixed point. However, conductivity
measurements at a fixed point show that the density oscillated about this linear trend.
An example is shown in figure 6, where we plot the density at ζ = 0.25 as a function
of time (figure 6a) and the deviations from the best-fit linear trend (figure 6b) for
experiment 10. The period of oscillation to (listed in table 1) was measured from the
density records for the asymptotic state for each experiment. The periods were all of
the order of (0.3–0.9)ta and (50–200)tw .

4.3. Shear layer establishment in existing stratification

After the tank had been stratified, the plume was turned off and the motions allowed
to decay. The plume was later restarted and horizontal velocity profiles were taken at
regular intervals. In 12 experiments, the pattern of development of the layers was the
same. A sequence of profiles from one run is shown in figure 7. At small times (figure
7a), the stratified water above the outflow layer began to move away from the plume
and a broad region in the upper half of the box moved towards the plume. Ignoring
the effects of stresses imposed by the rigid (no-slip) bottom and the partly-rigid
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Figure 5. Horizontal velocities (made dimensionless using the scale in (6) for the entrainment
velocity ue) at 8 min intervals during experiment 10 (see table 1) showing the transition between
a five-layered system and a four-layered system and back. (a) 62 min, (b) 70 min, (c) 78 min, (d)
86 min, (e) 94 min, (f) 102 min after start.
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Figure 6. The density ρe − ρr determined from the conductivity probe fixed at 0.175 m from the
bottom (ζ = 0.25) in experiment 10. The first front passed the probe at t = 900 s. (a) The density
variation is approximately linear with time long after the first front has passed the probe. (b)
Deviations ∆ρe from the linear trend in (a) show low-frequency periodic oscillations.

(free-slipping) surface at the top, this motion resembled the second baroclinic mode
(found in § 5.2 for the ‘filling box’ density profile). The position of the inflow velocity
maximum shifted down with time and a third shear layer soon formed at the top
(figure 7b). We will see below that the motion at this stage appeared to be dominated
by the third baroclinic mode. Additional vertical structure continued to develop in
the velocity profile, consistent with the appearance of higher baroclinic modes being
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Figure 7. The evolution of the baroclinic modes and development of shear layers in a stratified
tank initially at rest. These horizontal velocity profiles (made dimensionless using the scale in (6)
for the entrainment velocity ue) were taken (a) 2 min, (b) 4 min, (c) 6 min, (d) 8 min, (e) 10 min, (f)
12 min after restarting the plume in experiment 8. The establishment of the velocity structures in all
the experiments showed the same behaviour, differing only in the time taken to reach a quasi-steady
state.

excited by the bottom outflow, until the velocity profile reached that in figure 7(f).
The time required for the development of the baroclinic structure was much shorter
than the period of the persistent low-frequency oscillations seen in § 4.2. Hence, the
structure in figure 7(f) was a quasi-steady state. The dominant vertical lengthscale of
the velocity profile appeared to be set by the depth of the plume outflow.

We estimated the timescale for establishment of the shear layers by measuring the
time te taken for the third velocity extremum (from the bottom) to migrate down to
the level ζ = 0.28 and for the fourth extremum to reach ζ = 0.12 (the state in figure
7e). The plot in figure 8(a) of te against tw , each normalized by N−1, shows that the
time for the development of the shear layers was proportional to the travel time of
internal waves. (Note that both the travel times of internal waves along the length and
up through the height of the box are proportional to N−1(L/H).) The data are well

described by a straight line passing through the origin, te = (12.6 ± 0.8)N−1(L/H).
Most of the variance in this result, however, can be attributed to the effects of
the third independent timescale, ta. A plot of te against ta, each normalized by
tw , in figure 8(b) shows that te/tw = (15.8± 0.5)− (0.0172± 0.003)ta/tw . Thus, the
normalized establishment time was weakly dependent on the advection time, becoming
longer for more rapid ‘filling box’ ventilation. Establishment timescales that are 12 to
15 times the N−1(L/H) scale are consistent with the dominance of higher baroclinic
modes which have smaller phase speeds. For instance, if the total water depth H in



220 A. B. D. Wong, R. W. Griffiths and G. O. Hughes

20

15

10

5

0 100 200 300

(b)

te
tw

ta/tw

400

200

150

100

50

0 8 10 12

(a)

14642

te /N
–1

tw /N
–1

Figure 8. Time te taken for the velocity structure to evolve to that shown in figure 7(e). (a) te
is plotted against tw , the timescale for long internal waves to travel the length of the tank, both

non-dimensionalized by N−1. (b) te is plotted against ta, the timescale for vertical advection in
the ‘filling box’ model, both non-dimensionalized by tw . Note that in (a) the abscissa reduces to

tw/N−1 = L/H .

the wave-speed scale is replaced by 1
4
H , the dominant vertical scale of forcing, then

te indicates that these higher modes traverse the length of the tank only a few times
before the quasi-steady flow is established.

In order to place the rate of vertical advection in perspective, we note that the
quasi-steady shear layers were established in a time of the order of one-tenth of the
advection timescale, the time required for the tank to be refreshed with new plume
water. This is illustrated in figure 9, which shows the distribution of water from the
plume at a time approximately te after the restart. The dye from the restarted plume
had reached only heights below ζ = 0.65 (and the vertical velocity decays rapidly
with height (4a)), whereas the velocity structure was already approaching the final
quasi-steady state.

5. Discussion
In this section, we present further detail on the shear layers, beginning in § 5.1

with a summary of the shear layers as seen in the collection of experiments described
in § 3. In § 5.2, we calculate the inviscid baroclinic normal modes for the density
stratification (4c) and show that the vertical scale of the shear layers decreases with
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Figure 9. The shear-layer structure developed throughout the tank at the time the dyed outflow
from a restarted plume in a previously established density gradient had been advected upward to
ζ = 0.65.

distance from the bottom. The effect of viscosity on the normal modes is examined
using a theoretical analysis in § 5.3 for a linear density stratification. The horizontal
velocities in the shear layers are then adjusted in § 5.4 using a heuristic approach to
take into account both viscosity and the nonlinear density stratification (4c). Finally,
in § 5.5, we compare the shear layers with similar well-known flows.

5.1. The circulation pattern

The large-time circulation pattern in a ‘filling box’ could be divided broadly into
three regions: the bottom outflow layer, the central region of the water column and
the near-surface region. The plume outflow was a gravity current which occupied the
bottom quarter of the tank (0.75 < ζ < 1). This region was dominated by convection
and not greatly influenced by wave motions in the overlying stratified water. Under
the conditions of our experiments, it was also a turbulent layer. The dimensionless
thickness of the outflow layer did not vary significantly, despite large variations in
the dimensions of the tank. Assuming no interference between the plume and the
tank walls, the height H of the source is the sole external lengthscale available to
influence the plume and its volume flux. Hence, the bottom outflow is expected (and
observed) to be a fixed fraction of the source height. If the outflow is homogeneous,
we might also expect the dimensionless plume outflow depth to be larger for narrower
tanks with both the source height and buoyancy flux held constant. However, this
was not the case (see figure 4, where the outflow depth in experiment 2 in a 0.2 m
wide tank was actually similar to that recorded for experiment 10 in a 0.3 m wide
tank). A possible explanation is that the greater expansion of the outflow in the wider
tank led to greater entrainment of overlying water. Another explanation, arising from
the conclusions of the analyses in §§ 5.2 and 5.3 below, is that the outflow depth is
controlled by the normal mode selected by the system.

The central region of the water column (0.15 < ζ < 0.75) was dominated by baro-
clinic modes generated by internal gravity waves and was comprised of at least three
velocity extrema. The laminar motions in this region were less rapid than the under-
lying plume outflow from which they apparently derived their energy. The outflow
also apparently set the dominant vertical scale corresponding to four to six shear
layers through the tank depth. The effects of entrainment into the plume were most
noticeable in this central region. The entrainment velocity opposed the flow in the
third shear layer from the bottom and reduced its velocity relative to the tank to
almost zero. This region also exhibited the greatest low-frequency time-variability in
horizontal motion, with periodic reversals in direction and accompanying fluctuations
in the density gradient at some depths.

The region very close to the surface (0 < ζ < 0.15) was characterized by a small
horizontal velocity towards the plume. The horizontal velocity associated with the
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baroclinic modes was smaller at these depths than the entrainment velocity Ue into
the plume, even though Ue → 0 at the surface. This region is where both the buoyancy
frequency and vertical wavenumber (see below) were largest. The velocity structure
close to the surface was also the most variable with time. In the experiments, the
flow was sometimes unidirectional and at other times two or three distinct velocity
extrema were evident, corresponding to counterflowing shear layers superimposed on
the entrainment flow toward the plume.

For a single plume descending in the ‘filling box’, Baines & Turner (1969) verified
the density profile (4c) experimentally for the region below the first-front. Agreement
between the experimental and theoretical density profiles was achieved even though
background motions, now shown to permeate ‘filling boxes’, do not feature in the
model of § 2. Hence, it appears that entrainment into the plume is not affected by the
presence of shear layers.

5.2. Baroclinic normal modes

We assume that (4c) defines the stratification in our experiments at large times. In
this section, we calculate numerically the first eight baroclinic modes, neglecting the
effects of viscosity and the relatively small velocities associated with entrainment and
vertical advection. In this and the following sections, x is the distance along the tank,
y the height from the bottom, and u and w the usual velocities. The equations of
motion in the two-dimensional case are

∂u

∂x
+
∂w

∂y
= 0, (7a)

ρ0

∂u

∂t
+
∂p′

∂x
= 0, (7b)

ρ0

∂w

∂t
+
∂p′

∂y
+ ρ′g = 0, (7c)

∂ρ′

∂t
+ w

dρ0

dy
= 0, (7d)

where ρ′ and p′ are small perturbations of the density and pressure field, respectively.
Following Gill (1982), w and p′ can be separated into

w = ĥ(y)w̃(x, t) and p′ = p̂(y)η̃(x, t).

Here, ĥ and p̂ are the vertical displacement and pressure, respectively, while w̃ has
units of inverse time and η̃ is dimensionless. With these variables, and using the
hydrostatic approximation, equations (7) are separated and reduced to

d2ĥ

dy2
+
N2

c2
n

ĥ = 0, (8a)

c2
nρ0

dĥ

dy
= p̂, (8b)

∂w̃

∂t
− c2

n

∂2η

∂x2
= 0, (8c)

w̃ =
∂η̃

∂t
, (8d)
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Figure 10. Inviscid baroclinic normal modes calculated for the plume stratification (4c). (a) The
first four modes and (b) the next four modes. The horizontal velocities have been normalized to
give the same value at the bottom.

where cn is a separation constant. There is an infinite sequence of descending eigen-
values cn, each of which corresponds to an eigenfunction (normal mode) with the
relevant boundary conditions being rigid, but free-slipping top and bottom. With a

disturbance induced at y = 0, the solutions for ĥ and p̂ are calculated numerically from
(8a) and (8b). Meanwhile, (8c) and (8d) indicate that η̃ satisfies the wave equation. A
solution to η̃ and w̃ has the form

η̃ = A sin (kx+ ωt), w̃ = Aω cos (kx+ ωt), (9)

where the frequency is related to the horizontal wavenumber by ω2 = c2
nk

2. Note
that k (and hence ω) depends on the horizontal mode of the waves. The horizontal
velocity is also separable in the form

u =
p̂(y)

gρ0(y)
ũ(x, t),

and can be calculated from the solution to (8). If the frequency is zero (as for
columnar baroclinic modes in an infinitely long tank), w̃, η̃ and ũ do not vary with
time, so that for fixed x, the horizontal velocity is proportional to p̂(y)/gρ0(y). Figure
10 gives the functional dependence of u on the dimensionless depth ζ for the first eight
columnar (ω = 0) modes. It shows that for the nth mode there are n+ 1 shear layers
(or velocity extrema) whose thicknesses decrease toward the top of the tank. In the
experiments, the region at the top of the stratification is characterized by very large
density gradients, and is therefore expected to be significantly altered by diffusion. In
addition, the very small vertical scales of motion in this region are expected to be
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Period of horizontal
Mode Eigenvalue oscillations
n cn (ms−1) Tn(s)

1 0.0331 66.4
2 0.0203 109
3 0.0140 157
4 0.0106 208
5 0.00843 261
6 0.00701 314
7 0.00600 367
8 0.00525 419

Table 2. The eigenvalues and periods of horizontal oscillations for the normal modes in
experiment 10.

removed by viscous effects, and so we will focus on the region 0.05 < ζ < 1, where
the nth mode, for 4 6 n 6 8, has n− 1 velocity extrema.

In the experiments, the modes that were excited most strongly at asymptotically
large times were those that had vertical lengthscales at the bottom of the tank similar
to the plume outflow depth. The measured horizontal velocity profiles (figure 4)
in the region 0.1 < ζ < 1 are qualitatively similar to the velocity structures of the
sixth, seventh and eighth inviscid columnar modes, except that the amplitudes of
the horizontal velocities increase with height in the inviscid modes. In particular,
the third and fourth horizontal velocity extrema of the n = 7 columnar mode lie at
ζ = 0.35 and ζ = 0.19, consistent with our experimental observations. This mode also
corresponds to six shear layers, as was commonly observed. In contrast, the structures
of the lower columnar modes (n = 1 to 4) were seen only at short times after the
plume was started in the pre-established stratification (§ 4.3). The observations were
therefore consistent with the early appearance, particularly in the upper half of the
water column, of the most rapidly propagating columnar modes, and with the later
appearance of the slower propagating columnar modes, the latter also being the most
strongly excited. On the other hand, the measured horizontal velocities decay with
height, whereas the calculated columnar modes have amplitudes that increase with
height. The difference can be attributed to viscosity which acts most strongly on the
smaller vertical scales characteristic of both the higher columnar modes and of the
upper more strongly stratified levels of the box. We look more closely at viscous
effects in the following sections. Sidewall dissipation in our long channels will further
contribute to this decay.

The wave equation constructed from (8c) and (8d) gives the wave speed cn for
the spectrum of normal modes having horizontal wavenumber k. Therefore, we are
not restricted to consideration of zero frequency columnar modes. In particular,
for a channel of finite length L, we assume that the modes of oscillation are the
fundamental modes having u = 0 at x = 0, L and wavenumber k = π/L. The period
Tn of oscillation in each normal mode can then be calculated. Table 2 gives the values
of cn and Tn for each of the first eight normal modes for the conditions of experiment
10. It shows that the modes excited most strongly (the experiments indicate that these
are n = 6, 7 and 8) are predicted to have periods of approximately 5 to 7 min. Instead,
we observed oscillations of very much longer periods, as reported in § 4.2. We note that
beating periods between the sixth and seventh modes and between the seventh and
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eighth modes are approximately 70 and 95 min, respectively. These beating periods
are approximately twice the observed period, hence the low-frequency oscillations
seen in the experiments are not simply a linear superposition of modes. Oscillations
were also observed during both the development and decay of the shear layers (figures
7a–7c), but are transient in nature and therefore different to the oscillations expected
under the large-time normal mode description. In § 5.4, we show that the dominant
mode corresponds to a travelling internal gravity wave whose downward phase speed
is approximately balanced by the upward vertical advection above the plume outflow.
The approximate balance may lead to a quasi-stationary wave field – the observed
long-period oscillations at a given height corresponding to a wave mode with much
higher intrinsic frequency, but whose phase speed is not exactly balanced by the
vertical advection at all heights.

5.3. Analysis for viscous internal waves in a uniform buoyancy frequency environment

We take as our starting point the two-dimensional linearized equations of motion in
(7) with the addition of viscous terms in the momentum equations. Thus, (7b) and
(7c) become

ρ0

∂u

∂t
+
∂p′

∂x
− ρ0ν

(
∂2

∂x2
+

∂2

∂y2

)
u = 0, (10a)

ρ0

∂w

∂t
+
∂ρ′

∂y
+ ρ′g − ρ0ν

(
∂2

∂x2
+

∂2

∂y2

)
w = 0. (10b)

The flows in the ‘filling box’ resulting from entrainment and vertical advection have
been neglected in the linearized system of equations. Introducing the streamfunction
ψ such that (u, w) = (∂ψ/∂y,−∂ψ/∂x), we can write the system given by (7a), (7d),
(10a) and (10b) as[

∂

∂t
− ν

(
∂2

∂x2
+

∂2

∂y2

)][
∂

∂t

(
∂2

∂x2
+

∂2

∂y2

)]
ψ +N2 ∂

2ψ

∂x2
= 0. (11)

To enable comparison with the scaling approach in § 5.4, we consider the case of a
linear density stratification (i.e. N2 = constant) and look for solutions that correspond
to a travelling wave in the vertical direction and a standing wave in the horizontal,
i.e. ψ = ψ̄ exp [i(my + ωt)] sin kx, where k and m are the respective horizontal and
vertical wavenumbers, and ψ̄ is a constant. Substituting this form into (11) gives the
dispersion relation

−iνωκ4 + ω2κ2 −N2k2 = 0, (12)

where the total wavenumber κ2 = m2 + k2. We again choose the horizontal wavenum-
ber k = π/L to correspond to the lowest mode that satisfies the boundary conditions
of zero horizontal velocity at x = 0, L in the tank. The vertical wavenumber m takes
complex values in order to describe the attenuation of the wave motion with height
owing to viscosity.

In the present case, shear layers are excited at the base of the tank by the plume
outflow. On physical grounds, we consider only internal wave modes that decay
with height. This restricts the solution to roots with Im (m) > 0. Moreover, only
modes that radiate energy upward from the plume outflow are permissible. For
the group velocity to be upward (i.e. downward phase velocity) we require that
Re (m) > 0. It can be shown that only one of the four possible roots for κ in (12)
satisfies these conditions, and that this root corresponds to the dimensionless vertical
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wavenumber

mH= 1
2

√
ω′Re


(
|X|−|β| sin

(
φ

2

)
+

2π2L′2

ω′Re

)1/2

+ i
|β| cos (φ/2)− 1(

|X| − |β| sin (φ/2) +
2π2L′2

ω′Re

)1/2

,
(13)

where

X =

[(
|β| cos

(
φ

2

)
− 1

)2

+

(
|β| sin

(
φ

2

)
− 2π2L′2

ω′Re

)2
]1/2

, (14)

tanφ =
−4π2L′2

ω′3Re
, (15)

and

|β| =
[

1 +

(
4π2L′2

ω′3Re

)2
]1/4

. (16)

The dimensionless parameters are the Reynolds number Re = NH2/ν, the tank aspect
ratio L′ = H/L and the frequency ω′ = ω/N.

Boundary conditions of zero vertical velocity at the top and bottom of the tank
require that the phase of ψ is independent of time. This condition is satisfied only
by a trivial solution for ψ and therefore suggests that vertical advection in the ‘filling
box’ cannot be neglected with regard to the boundary conditions. We now relax this
assumption and introduce a steady and spatially constant vertical velocity field Vf
(positive upwards) with which the plume outflow appears to move relative to the fluid,
and upon which the wave field is superimposed. Thus, the height y above the plume
tank bottom in a laboratory frame of reference is related to the apparent height yf
above the plume outflow in a frame of reference moving with the fluid (as denoted
by subscript f) according to

y = yf − Vft, (17)

where t is the time elapsed since a fluid parcel left the outflow. The governing equation
(11) and the assumed form for ψ applies in the frame of reference moving with the
fluid, i.e. y is replaced by yf . In the laboratory frame of reference, using (17), we
obtain a stationary wave field,

ψ = ψ̄ exp [i(myf + ωt)] sin kx = ψ̄ exp [imy] sin kx, (18)

when

Vf = −ω
m
, (19)

i.e. the tank moves downward with respect to the fluid at a speed that, as we will see
later, matches the downward phase speed of the travelling wave modes. Note that Vf
is equivalent to upward vertical advection in the ‘filling box’ at speed V relative to
the tank. We use the solutions to (11) in the fluid frame of reference by applying the
boundary conditions of zero vertical velocity at yf = Vft and yf = H + Vft. We find
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Figure 11. The dimensionless frequency spectra as a function of mode number n: x, ω′n obtained
from the analysis for viscous internal waves with parameters appropriate for experiment 10:
(Re = 9000 and L′ = 0.214); e, ω′i,n obtained for an inviscid fluid.

that ψ̄ must be purely real and that, by (13), the vertical wavenumbers satisfy

Re (mH) = nπ = 1
2
(ω′Re)1/2

(
|X| − |β| sin

(
φ

2

)
+

2π2L′2

ω′Re

)1/2

(n = 1, 2, 3, . . .). (20)

The spectrum of dimensionless frequencies ω′n obtained by solving (20) is plotted
in figure 11 as a function of n for Re = 9000 and L′ = 0.214. These parameters
correspond to experiment 10 if the density gradient in the ‘filling box’ is approximated
by a constant that is equal to the gradient at the tank bottom (i.e. y = 0). We discuss
the relevance of this approximation later in this section. Also plotted for comparison
is the dimensionless frequency spectrum ω′i,n corresponding to the permissible modes
in an inviscid fluid, as given by

ω′i,n = cos θ =
kH

(k2H2 + n2π2)1/2
(n = 1, 2, 3, . . .) (21)

with kH = πL′. The lowest modes (with least spatial variation) are little affected by
viscosity. For n > 4, however, the effect of viscosity becomes significant and decreases
the frequency of oscillation associated with a particular mode.

The non-dimensionalized attenuation rate associated with the spectrum ω′n is given
by Im (mH) (from (13)) and is plotted in figure 12 for each n, Re = 9000 and L′ = 0.214.
For n > 4, it can be seen that viscous attenuation over the tank depth (y/H = 1) will
reduce the modal amplitude by a factor which exceeds 1/e.

The stationary horizontal velocity structure un(y
′) in the laboratory frame cor-

responding to each mode n may be calculated as u = Re[∂ψ/∂yf] and, using (17),
written in non-dimensional form as

un(y
′)

NH
=
|ψ̄|
NH2

|mH | exp [−Im (mH)ny
′] cos [Re(mH)ny

′ + Φ] sin (kx), (22)

where

Φ = tan−1 Im (mH)n
Re(mH)n

, 0 6 Φ <
π

2
, (23)
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Figure 12. The non-dimensional attenuation rate Im (mH)n corresponding to each mode n predicted
by the analysis for viscous internal waves. As in figure 11, the parameters are Re = 9000 and
L′ = 0.214.
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first 10 modes predicted by the analysis for viscous internal waves. The vertical axis is the
non-dimensional height y/H above the tank bottom. As in figures 11 and 12, the parameters
are Re = 9000 and L′ = 0.214.

is a constant dependent only upon mH . The normalized horizontal velocity profiles
un(y

′)H/|ψ̄||mH | sin (kx) obtained from (22) with Re = 9000 and L′ = 0.214 are given
in figure 13. This normalization removes both the variation of un with horizontal dis-
tance from the plume and the dependence upon the amplitude spectrum ψ̄ = ψ̄(mH).
Further normalization of the velocity un by |mH | ensures that the plotted modes are
of a similar amplitude, allowing their structure and attenuation rates to be com-
pared easily. As expected, the higher modes with the most rapid spatial variation are
strongly attenuated. It is also evident that the increased attenuation of higher modes
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means that they are unlikely to have a significant effect on the overall observed flow
structure.

The effect of varying the parameters Re and L′ on the results in figures 11–13 may
be summarized in qualitative terms. An increase in the Reynolds number Re has two
effects. The viscous attenuation Im (mH) is reduced and the viscous dispersion relation
(20) produces a frequency spectrum approaching that given by the inviscid relation
in (21). Decreasing the tank aspect ratio L′ while holding Re constant decreases the
frequency associated with a given mode, primarily because kH is reduced. To a first
approximation, the decrease in frequency is almost linear with kH , as can be seen
from the inviscid dispersion relation in (21). This decrease in frequency associated
with a given mode leads to slower motion and, hence, increased viscous attenuation
when L′ is decreased (Re held constant).

We have assumed that the quasi-steady flow structure corresponds to a travelling
wave mode in the fluid frame whose uniform downward phase speed in the linear
stratification is balanced by the uniform upward advection in the tank interior. We
now compare the downward phase speed cy = ω/m of each wave mode with the
vertical advection velocity V for all of the experiments. Two different cases are
examined. First, we consider the phase speeds associated with the inviscid baroclinic
normal modes of the nonlinear ‘filling box’ density profile, as found in § 5.2. The
dispersion relation for internal waves (e.g. see Lighthill 1978),

ω = N(y)
k

(k2 + m2(y))1/2
, (24)

may be used with table 2 to calculate cy at the level of the plume outflow (i.e. y = 0).
Secondly, we examine the phase speeds of wave modes in a viscous linearly stratified
fluid (uniform N), as predicted by the analysis in this section. In the more complex
‘filling box’ flow, the advection–phase speed balance is again anticipated to hold at
the level of the plume outflow, where the wave motions are excited. Therefore, the
density gradient at the outflow level (taken to be the tank bottom) determines the
properties of waves above this level. Hence, the results from this section may be
related to those from § 5.2 by equating the density gradient of the linear stratification
with that at the base of the ‘filling box’ density profile. Equation (20) derived for the
linear stratification can then be used to estimate ω, and thus cy for each wave mode in
the nonlinear stratification. Further, the vertical advection in the linear stratification
is taken to be equal to that at the base of the ‘filling box’, i.e. V (y = 0).

We plot cy(y = 0)− V (y = 0) versus the mode number n in figures 14(a) and 14(b)
for the two respective cases. Figure 14(a) suggests that the upward advection in the
‘filling box’ can be balanced by the downward phase speed of a mode with n greater
than 7 (i.e. more than 8 shear layers) over the range of experimental parameters.
This compares with 5 or 6 shear layers typically observed in experiments. Figure
14(b) illustrates the effect that the linear stratification approximation has on the shear
layer structure; the advection–phase speed balance is now achieved by modes with
n between 2 and 4 (i.e. between 3 and 5 shear layers). The reason for this difference
is that the density gradient and hence the wavenumber both increase with height in
the ‘filling box’ density profile, leading to an increase in the number of shear layers.
However, the linear stratification approximation is useful because it provides a simpler
means of predicting the dominant wavenumber near the bottom of the tank. This is
illustrated in figure 15, where the dimensionless vertical wavenumber mH is plotted
as a function of cy(y = 0)− V (y = 0) for each experiment. The vertical wavenumber
of quasi-stationary modes, whose phase speed approximately balances the vertical
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Figure 14. Plot of the difference between phase speed and vertical advection speed as a function
of the mode number n (points denoted by discrete symbols) in each experiment for (a) the inviscid
baroclinic modes in a ‘filling box’ density stratification with no vertical advection, and (b) the modes
in viscous linearly stratified fluid with uniform vertical advection. Values of cy(y = 0)− V (y = 0) ≈ 0
(where cy is positive downwards and V is positive upwards) indicate modes that are approximately
stationary in the laboratory frame of reference.

advection, is indicated by points for which cy(y = 0)− V (y = 0) ≈ 0. Dimensionless
vertical wavenumbers in the range 6–11 are predicted for both the ‘filling box’ density
profile (figure 15a) and the linear stratification (figure 15b).

The horizontal velocity un for each mode n given by (22) first becomes zero at a
level

yn

H
=
π/2− Φn
Re{mH}n (25)

above the tank bottom. The dominant mode predicted for a linear stratification
is in the range n = 2–4 (wavenumber Re{mH} = 6–11) and, allowing Φ to vary
between the limits in (23), corresponds to a ‘shear layer’ of depth up to 0.26H at the
tank bottom. This depth range encompasses the observed plume outflow depth (i.e.
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Figure 15. Plot of the dimensionless vertical wavenumber mH predicted for each mode (points
denoted by discrete symbols) over the range of experiments for (a) the inviscid baroclinic modes in
a ‘filling box’ density stratification with no vertical advection, and (b) the modes in viscous linearly
stratified fluid with uniform vertical advection. The dimensionless wavenumber mH is plotted as a
function of cy(y = 0)− V (y = 0), and values of cy(y = 0)− V (y = 0) ≈ 0 indicate modes that are
approximately stationary in the laboratory frame of reference.

approximately 1
4
H), but a more careful approach, which takes account of variations

in both the phase constant Φn in (25) and the dominant modes in each experiment,
suggests the zero-velocity level corresponds more closely with the outflow depth.
Figure 16 is a plot of the variation of the dimensionless zero velocity level yn/H as
a function of cy(y = 0)− V (y = 0). The bottom shear layer depth is expected to lie
in the approximate range 0.15–0.26H in a linear stratification; the ‘filling box’ flow
might be anticipated to decrease these values slightly, as discussed in § 5.4.

Although the plume outflow is turbulent and essentially forced by an external
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Figure 16. The dimensionless zero velocity height yn/H predicted for each mode (points denoted
by discrete symbols) over the range of experiments. The dimensionless height yn/H is plotted as a
function of cy(y = 0)− V (y = 0), and modes with cy(y = 0)− V (y = 0) ≈ 0 indicate the expected
depth of the bottom shear layer.

process, we expect that the wave field and the outflow will be coupled. We have not
attempted to calculate the amplitude spectrum ψ̄(mH) in (22), but anticipate that
modes whose half-wavelength is comparable to the outflow depth will be excited
preferentially. As the wave field must be stationary in the vicinity of the outflow,
the nature of the coupling will be to influence the outflow depth so as to maintain
a stationary wave field. We suggest, therefore, that it is not a coincidence that the
observed outflow depth is comparable with that predicted for the bottom shear layer.

Very slow oscillations in the flow are observed at a fixed height (i.e. in the laboratory
frame), as described in § 4.2. The analysis in this section cannot capture this behaviour
since it contradicts our stationarity assumption. However, we suggest that the slow
oscillations of the quasi-steady flow structure are due to the transfer of momentum
between the wave field and the mean flow. This interaction is currently the subject of
further work.

There are two important conclusions from this section. First, viscosity plays a
significant role in attenuating with height the motion in the shear layers. The least
rapidly varying wave modes (small n) are weakly attenuated and therefore well
approximated by the inviscid dispersion relation (21). Viscous attenuation renders
more rapidly varying modes unimportant for the flow structure. Secondly, it is
apparent that vertical advection in the ‘filling box’ circulation is crucial in setting the
vertical scale of the shear layers.

5.4. Effects of viscosity on horizontal velocities

It was not possible to include readily in the models of either § 5.2 or § 5.3 the effects of
vertical advection in the ‘filling box’. Instead, we develop a simpler heuristic model in
this section that takes account of the effects of vertical advection, viscous attenuation
and the nonlinear density profile in determining the shear layer structure. As in § 5.2,
we disregard the horizontal flow due to entrainment of water into the plume.

We assume that a disturbance at the bottom of the tank supplies the energy required
to develop and sustain the baroclinic normal modes, but the upward energy and
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momentum fluxes in internal waves are attenuated by viscosity. In our experiments,
the diffusion of momentum acts to reduce velocities in the shear layers, as does
viscous dissipation in the boundary layers along the tank walls. However, dissipation
in the tank wall boundary layers is neglected here; the conditions under which this
approximation is valid are given in the Appendix.

We review some relevant results from the theory of internal wave propagation in a
moving stratified fluid (see for example Lighthill 1978). The frequency ω measured at
a fixed point is dependent upon both the rate at which waves are advected past that
point and the frequency ωr that would be measured locally in a fluid at rest. For mild
rates of viscous attenuation, it was shown in § 5.3 that ωr will approximately satisfy
the inviscid dispersion relation (24), where N(y) is the local buoyancy frequency. For
internal waves whose wavelength is much shorter than the scale over which N(y)
changes significantly, the frequency ω remains unchanged along a ray, i.e.

ω = −ωr + mV = constant, (26)

where V is the velocity of the fluid. Note that we are dealing with a travelling
wave whose phase velocity direction is opposite to the advection velocity, and that
the signs in (26) have been chosen accordingly. The observed oscillation period is
much longer than values of either ωr or mV alone would suggest. Therefore, to a
good approximation, we may set ω = 0 in (26). As expected, this approximation
gives a stationary wave whose downward phase velocity cy = ωr/m balances vertical
advection exactly at all heights. Because horizontal scales are much larger than
vertical scales (k � m(y)), it follows from (24) and (26) that

m(y)

m(0)
≈
[
N(y)V (0)

N(0)V (y)

]1/2

. (27)

From the inviscid solution in § 5.2, it is already clear that the vertical scale of the
shear layers decreases with height because of increasing buoyancy frequency N(y).
Equation (27) shows that the vertical scale of the shear layers also decreases as a result
of the decrease in vertical advection with height. If we let h(y) represent a vertical
scale equivalent to half the vertical wavelength of the mode under consideration,
then h(y) = π/m(y) is approximately the thickness of the shear layer (i.e. the distance
between zero crossings in the vertical profile of horizontal velocity) at y. However,
h(y) decreases monotonically with y, and will not, in general, represent the exact
thickness of the shear layer at a given height. Later, we will calculate the value of
m(0) from (26); this will determine the thickness of the bottom layer and indicate the
dominant mode that we are interested in.

The speed at which energy propagates vertically is cgy(y) + V (y), where

cgy(y) =
∂ωr

∂m
=
N(y)m(y)k(y)

|k(y)|3 (28)

is the group velocity relative to the mean vertical flow and k(y) is the wavenum-
ber vector (k(y), m(y)). Here, only the fundamental horizontal mode satisfying the
boundary conditions at the endwalls is assumed to be important, i.e. the horizontal
wavenumber k(y) = π/L. For k � m(y), we have from (24) that ωr ≈ N(y)k/m(y)
and, by (26) and (28), that

cgy(y) ≈ N(y)k

m2(y)
≈ ωr(y)

m(y)
= −cy(y) = V (y). (29)

The experiments indicate that motion in the shear layers decays with height. We
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assume that the variation of horizontal velocity with height may be described by an
attenuated sinusoid,

u(y)

u(0)
= C(y) cos [m(y)y], (30)

where C(y) and m(y) vary slowly in y relative to u(y). In normalizing u(y) by u(0)
we assume any variation of the horizontal velocity with x is removed. Note that the
vertical dependence assumed in (30) satisfies the rigid free-slip boundary conditions
in the tank. Equation (27) gives m(y); to find C(y) we note that the instantaneous
rate of working by viscous forces (Batchelor 1967, p. 152) is

θ = ρ0ν
∂ui

∂xj

(
∂ui

∂xj
+
∂uj

∂xi

)

≈ ρ0ν

(
∂u

∂y

)2

, (31)

where ν is the kinematic viscosity. The energy balance in the tank may then be written
as

∂

∂y
[cgyK] = −θ̄ = −ρ0ν

(
∂u

∂y

)2

, (32)

where K is the energy per unit volume associated with a wavepacket that propa-
gates vertically with the group velocity cgy relative to the mean vertical flow. The
overbar represents an average over a wavelength. Note that in an inviscid flow,
(32) requires the flux of energy relative to the mean flow to be non-divergent. For
the internal wave modes in these experiments, u(y)� w(y) and therefore the energy
K(y) ≈ 1

2
ρ0u

2(0)C2(y). We introduce a long lengthscale y′ over which K(y′), C(y′) and
cgy(y

′) evolve and a short lengthscale y over which only u(y) varies significantly.
Substituting (29) and (30) into (32) and using (27) gives

∂

∂y′
[C2(y′)V (y′)] ≈ −νkN(y′)C2(y′)

V (y′)
. (33)

Dropping primes, the solution for C(y) is then

C(y) ≈
[
V (0)

V (y)

]1/2

exp

[
− 1

2
νk

∫
N(y)

V 2(y)
dy

]
. (34)

Returning to the traditional ‘filling box’ solution of § 2, the definition of y gives
ζ = (H − y)/H so that the power series expansion (to three terms) for N(y) obtained
from (3) and (4c) is

N(y) =
F1/3

22/3E2/3π1/3H4/3
{2.18ζ−5/3 + 0.279ζ−2/3 + 0.0831ζ1/3 + · · ·}1/2

=
F1/3

22/3E2/3π1/3H4/3
n(ζ), (35)

where

n(ζ) = 1.48ζ−5/6 + 0.0945ζ1/6 + 0.0251ζ7/6 + · · · . (36)

From (3) and (4a) the power series expansion (to three terms) for V (y) is

V (y) = −π
2/324/3E4/3H5/3F1/3

A
f(ζ), (37)
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Figure 17. Plot showing the amplitude envelope ±C(y) from (41) together with the normalized
horizontal velocity u(y)/u(0) predicted by (27), (30) and (42) for the parameters of experiment 10.
- - -, for comparison, the amplitude attenuation function C1(y) from (43) for the parameters of
experiment 10.

with

f(ζ) = 0.460ζ5/3 − 0.0588ζ8/3 − 0.0100ζ11/3, (38)

so that ∫ y

0

N(y)

V 2(y)
dy =

A2

π5/3210/3E10/3H11/3F1/3
g(ζ), (39)

where

g(ζ) = −4.00 + 2.21ζ−19/6 + 1.03ζ−13/6 + 0.754ζ−7/6 + · · · . (40)

The solution (34) for the amplitude C(y) can therefore be expressed as

C(y) ≈
[
V (0)

V (y)

]1/2

exp

{
− ν

2L

A2

π2/3210/3E10/3H11/3F1/3
g(ζ)

}
. (41)

Equation (41) gives the envelope for the shear-layer amplitude as a function of
height, and is plotted in figure 17 for the parameters of experiment 10. Two points
are worth noting. First, the amplitude is predicted to increase slightly before decaying
with height. At small y, the flux of energy cgyK relative to the mean vertical advection
is reduced only slightly by diffusion of momentum. However, the group velocity cgy
decreases with height and leads to a net increase in the wave energy K per unit volume
at small y. The effects of viscosity are more noticeable at greater heights where m(y)
has increased significantly. The horizontal velocities observed in experiment 10 (figure
5) perhaps lend qualitative support to this behaviour. Rather than clearly decreasing
with height, the two lowest shear layers are approximately equal in magnitude.

Secondly, the envelope (41) will decay more rapidly with height when the initial
wavenumber is larger. This dependence is incorporated implicitly in (41) as a conse-
quence of assuming the wave field to be stationary in deriving (27). From (29), the
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vertical wavenumber at the tank bottom is

m(0)H =

(
N(0)H

V (0)
kH

)1/2

=

[
B1/2

2EH1/2

] [
n(ζ = 1)

f(ζ = 1)

]1/2

= 2.02

[
B1/2

2EH1/2

]
, (42)

and the predicted values of m(0)H for each experiment are listed in the last column
of table 1. Note that these values are comparable to those expected from the curves
corresponding to each experiment in figure 15. Using (42), we can express (41) as

C(y) =

[
f(ζ = 1)

f(ζ)

]1/2

exp

[
−m

4(0)H4

2πReL′
f2(ζ = 1)

n(ζ = 1)
g(ζ)

]
, (43)

where the Reynolds number Re = N(y = 0)H2/ν, and the tank aspect ratio L′ = H/L.
The velocity profile u(y)/u(0) is plotted in figure 17 for the parameters of experiment

10 using (27) and (42). The main features of the observed profiles in figure 5 are
reproduced. The velocity profile decays significantly within the depth of the tank and
has approximately six shear layers, broadly consistent with the experiments.

We now discuss the discrepancies in the solution. First, almost no motion is
predicted above the height y = 0.7H , whereas weak shear layers are observed in this
region. Secondly, the predicted variation of velocity with height is more rapid than
observed. The reasons for these discrepancies are in part related. We predict too large
a wavenumber at the tank bottom, which leads to more rapid attenuation of the
motion with height owing to increased velocity gradients in shear layers of smaller
thickness. Equation (43) reveals just how sensitive the predicted attenuation rate will
be: it depends on the fourth power of the wavenumber m(0)H . Our prediction of
the vertical wavenumber is based on the buoyancy frequency and vertical advection
given by the ‘filling box’ theory at the tank bottom, where the wave field is excited.
However, the plume outflow is turbulent and the resultant mixing will tend to reduce
the local density gradient; indeed the ‘filling box’ solution is valid only at depths of
inflow to the plume. This reduction in N(0) will, by (42), lead to a less rapid variation
of velocity with height and hence less attenuation than predicted by (34).

A reduction of the local buoyancy frequency N(0) by the turbulent outflow will
also increase the depth of the ‘shear layer’ at the tank bottom. The plot in figure
17 for experiment 10 predicts the bottom shear-layer depth to the approximately
0.15H . In § 5.3, we predicted the dominant internal wave mode to be approximately
n = 3 in experiment 10 with the depth of the shear layer at the tank bottom being
approximately 0.18H (see figure 16). This estimate corresponds to the expected height
of zero velocity of 0.18H based on a constant wavenumber of m(0)H = 8.8 (see table 1)
for experiment 10. Note that the analysis in § 5.3 was for a linear stratification with
uniform advection, and that we would expect this depth to be reduced in a ‘filling
box’ owing to the increase in wavenumber with height. However, observations for
experiment 10 in figure 5 suggest that the outflow depth was closer to 0.25H .

A further reason why the flow in the upper part of the tank is not correctly
modelled is that the assumption of a scale separation between y′ and y, used to
obtain (33), becomes invalid. Indeed the theory predicts its own downfall, as can be
seen in figure 17 above y ≈ 0.5H , where C(y) has an e-folding scale comparable with
the wavelength. Thus, the velocity profile (30) cannot be substituted into (32) while
neglecting the variation with y of the amplitude and wavenumber in the upper part
of the tank. If this assumption is relaxed, a nonlinear equation for C(y) is obtained
in place of (33). Although this equation cannot be solved readily in an analytical
form, it is apparent that the effect of the nonlinear terms will be to reduce the rate of
attenuation with y of the amplitude function C(y).
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In order to show the significance of an increasing wavenumber with height as given
by (27), and to allow comparison with the theoretical model in § 5.3, we also give
an alternative solution C1(y) to (33) for uniform vertical wavenumber by assuming
N(y) = N(0) (i.e. a linear density gradient) and V (y) = V (0):

C1(y) = exp

{
− ν

2L

A2

π2/3210/3E10/3H11/3F1/3

n(ζ = 1)

f2(ζ = 1)

y

H

}
= exp

[
−m

4(0)H4

2πReL′
y

H

]
. (44)

Thus, C1(y) has the same dependence on the experimental parameters as does C(y).
Hence, smaller tank aspect ratios and weaker buoyancy fluxes (resulting in weaker
stratification and reduced Reynolds number) should result in greater attenuation
of motion with height. These conclusions are in agreement with the qualitative
observations in § 5.3, where decreasing either the Reynolds number or the tank aspect
ratio increased the attenuation. The attenuation rate given by (44) is plotted in figure
17 for the parameters of experiment 10. Comparison of C1(y) with the amplitude
variation of the n = 3 mode in figure 16 (predicted in § 5.3 as most likely to dominate
in experiment 10) shows that (44) is a good approximation to the more rigorously
derived result. In the lower part of the tank (y < 0.4), where variations in N(y)
and V (y) are relatively small, the two functions C(y) and C1(y) behave in a similar
manner. However, above this level, C(y) decreases very much more rapidly than C1(y),
indicating that the attenuation rate is highly sensitive to the decreasing vertical scale
of the shear layers.

In our experiments, the parameter m4(0)H4/2πReL′ in (42) and (44) lies in the
range 0.07–0.64 with the exception of four experiments (1, 5, 9 and 11), where it is
larger (1.67–2.63). These four larger values correspond to a subset of the experiments
in which the horizontal velocities were noted to decay especially quickly with height,
thus providing some confirmation of our parameterization.

An additional check of the heuristic theory in this section can be made by comparing
the observed plume outflow velocity with a prediction based on the plume volume
flux and the velocity profile in (30). We assume that the downward volume flux in
the plume at the top of the outflow is approximately πR2W (ζ = 0.75), and that this
volume flux is equal to that in the outflow. Upon integrating (30) across the bottom
shear layer, and using (3), (4a) and (6), we predict the dimensionless outflow velocity
to be

u(0) ≈ 0.254
L

L− xm(0)H. (45)

Here, we have assumed that neither C(y) nor m(y) vary significantly in (30) across
the shear layer (see figure 17) and are, therefore, approximated well by the values
C(0) and m(0), respectively. The velocity profiles in figures 4, 5 and 7 were measured
at x = 1

2
L and for experiment 10 we predict u(0) ≈ 0.5m(0)H = 4.4, which is similar

to the observed values in the range 2–3. However, it is not surprising that (45)
overpredicts the observed values. First, (42) overestimates m(0)H , requiring the plume
volume flux to be carried in a shallower and faster bottom shear layer. Secondly, our
estimate in (45) takes no account of the tank geometry. The presence of three tank
walls adjacent to the axisymmetric plume might be expected to reduce the velocity in
the approximately two-dimensional outflow.

In summary, the predicted horizontal velocity profile (e.g. figure 17) provides strong
evidence that the shear layers are the result of baroclinic normal modes subject
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to the effects of viscosity. Diffusion of momentum owing to viscosity causes the
maximal horizontal velocity in successive shear layers to decrease with height so that
horizontal motions near the top of the water column have decayed essentially to zero.
Although the calculated horizontal velocity profiles do not give shear layers whose
vertical extent or individual thickness correspond precisely to observations, we have
demonstrated that these details are very sensitive to the wavenumber m(0)H at the
tank bottom. Hence, a small error in estimating m(0)H could conceivably account for
the discrepancies between predictions and observations.

The effects on internal wave modes of plume entrainment in the environment
have not been quantitatively explored. At shallow depths, where the magnitude of
horizontal velocities attributed to normal modes are smaller than or comparable to
the entrainment velocity towards the plume, fewer layers will be apparent. This effect
is likely to involve nonlinear interactions, and may be a factor in the discrepancy
between the calculated horizontal velocities of figure 17 and the observations from
experiment 10 in figure 4(a).

5.5. Comparisons with other shear flows

The horizontal shear layers found in the plume experiments show similarities to the
circulation observed in several other systems. Imberger, Thompson & Fandry (1976)
studied experimentally and numerically the two-dimensional flow resulting from the
withdrawal and intrusion of fluid from mid-depth in a uniformly stratified tank. They
studied a variety of cases based on a parameter R = Q(NL2/ν)2/3/NL2, which is the
product of the Froude number and one-third power of the Grashof number (Q is the
volume flux per unit width). For the case where R > 1 (supercritical flow dominated
by buoyancy and inertia, with relatively unimportant viscous effects), they showed
that convection was the dominant force behind the flow and that internal waves
propagated vertically until the induced flow was equal and opposite to the wave
phase velocity. The thickness of their withdrawal/intrusive layer was found to be of
O(Q1/2/N1/2), which is consistent with the lengthscale predicted in (42). Manins (1976)
studied intrusions into a linearly stratified fluid for 100 < Re∗ < 500 (where Re∗ is
the Reynolds number based on the intrusion. Note that this is a different definition
to that used in § 5.3). The intrusions were governed by an inertia–buoyancy balance
and forced a shear-layer type flow to develop. Above and below the intrusion a series
of equal thickness layers formed, between which the horizontal velocity alternated
in direction. Dimensional arguments predicted the intrusion thickness again to be of
O(Q1/2/N1/2); the average intrusion half-thickness measured in experiments was 0.15H
and compares favourably with our predictions in § 5.4. In the present experiments,
we evaluate R ∼ 10 (based on the volume flux at the base of the plume and the
buoyancy frequency (N−1)−1 and Re∗ ∼ 400 (based on the velocity and depth of the
plume outflow layer). Hence, these parameters confirm that our ‘filling box’ flows are
dominated near the tank bottom by inertia and buoyancy and are in the same regime
as the previous studies of intrusions. However, the value of Re∗ is sufficiently small
that viscosity is important in the upper levels of the tank where N is much greater.

Stratified flows with very small Froude numbers give qualitatively similar behaviour.
For example, Martin & Long (1968) studied the equations describing the generation
of columnar modes or ‘upstream wakes’ due to a thin, flat plate moving slowly in the
horizontal through a uniformly stratified fluid. Viscosity played an important part in
this flow and the disturbance produced an alternating layer structure with amplitudes
decreasing away from the plate, similar to the flow in our experiments. In a related
problem, Bretherton (1967) studied the flow generated by a cylinder moving slowly
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in the horizontal through a stratified fluid. At large distances ahead of the cylinder,
the uniform velocity profile was first perturbed by the arrival of rapidly propagating
long wavelength internal gravity waves. Some time later, the arrival of slower waves
of short vertical wavelength produced a ‘plug flow’ confined approximately to the
horizontal projection of the obstacle, and with velocity reversals above and below.
The equivalent Froude number for our experiments is 16QN−1/H2 ∼ 0.6 (based
on the outflow height 1

4
H). Thus, our conclusion in § 5.4, that viscosity is a strong

controlling influence in the upper levels of the water column as a consequence of
the increased buoyancy frequency, is consistent with the previous studies of viscous
upstream columnar wakes.

6. Conclusions
The stratified environment produced by a turbulent plume supports a series of shear

layers superimposed on the steady vertical advection and horizontal entrainment flows
driven by the plume. These layers are the result of a continuous excitation by the dense
plume outflow of baroclinic wave modes whose downward phase speed approximately
balances the upward advection in the ‘filling box’ in the vicinity of the outflow. This
approximate phase speed–advection balance also holds throughout the ‘filling box’,
leading to a shear-layer structure that is quasi-steady in the laboratory frame. The
dominant wave mode is found to have a vertical scale near the tank bottom that is
comparable with the observed turbulent outflow from the dense plume. We suggest
that the outflow is not independent of the wave field, and, therefore, that the dominant
baroclinic mode is responsible for setting the outflow depth. The baroclinic modes
are established on the timescale for the propagation of internal waves through the
box and develop rapidly compared to either the ventilation of the box by vertical
advection or the rate of change of the ‘filling box’ stratification in its transient stages.
Under laboratory conditions, the gravity current outflow from the base of the plume
is characterized by a moderate-to-low Froude number.

Experiments and analysis suggest that viscosity becomes a controlling influence on
the upward momentum flux and causes the amplitude of horizontal velocities in the
shear layers to decrease with increasing height from the base. Owing to both the large
increase in buoyancy frequency and the decrease in vertical advection towards the top
of the ‘filling box’, the shear layer depths decrease with height. At large times, when
the stratification has achieved its constant shape, the baroclinic modes also undergo a
very low-frequency oscillation between the five-layer and six-layer states (dominated
by modes n = 6 and 7, respectively). We suggest that this oscillation is due to the
transfer of momentum between the wave field and the mean flow. This interaction is
currently the subject of further work.

The presence of the shear layers is an interesting aspect of the ‘filling box’ convec-
tion. Although they have little effect on the stratification in that the density surfaces
are tilted only slightly in connection with the horizontal motion, the perturbed circu-
lation pattern will have large implications for the transport of both individual water
parcels and tracers in the system. For example, tracers released from a source at a
fixed depth in the water column, or from a mid-depth outflow produced by a second
plume with a smaller buoyancy flux, will spread laterally under control of the interior
flows driven by the strong plume. This observation is likely to be relevant to small
bodies of water such as lakes and fiords, and is possibly relevant to the oceanic ther-
mohaline circulation. For example, consider an idealized 1 km× 10 km rectangular
lake in which a stratification (N = O(10−2) s−1 and depth of O(100) m) is maintained
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by a melt-water input. Shear layers with thickness of O(10) m would be expected
to form on the timescale of a day. Attenuation of the motion with height increases
with the parameter m4(0)H4/2πReL′, which in our experiments was in the range
O(10−1)–O(1). Similar observations would be expected in our example lake, where
this attenuation parameter takes a value between O(10−1) and O(10) depending on
whether a laminar (ν = 10−6 m2 s−1) or turbulent ‘viscosity’ (e.g. νt up to 10−4 m2 s−1)
is used to characterize the diffusion of momentum. In the oceans, there are a number
of sources of intermediate and deep water, each involving vertical convection and
outflows that contribute to the water properties, the density stratification and the
forcing of the deep circulation. In addition, the characteristic vertical profile of buoy-
ancy frequency in mid-latitude oceans is not dissimilar to that generated by plumes
in the ‘filling box’ model. Thus, the sources having the greatest buoyancy fluxes may
conceivably produce baroclinic shear layers qualitatively similar to those observed in
our experiments while contributing to the maintenance of the oceanic stratification.
However, the downward volume flux of deep water is balanced by a relatively slow
upwelling over the vast area of the ocean basins. Therefore, the dominant wave modes
corresponding to shear layers are expected to be characterized by a small downward
phase velocity, small wavelength and hence large attenuation (values of the parameter
m4(0)H4/2πReL′ of O(102)–O(104) are estimated). The effect of the Earth’s rotation
may, however, play an important role in confining stronger shear layers to a small
portion of an ocean basin, and this is the subject of further investigation.
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Appendix. Neglect of sidewall boundary layers
We have neglected in this paper the flux of horizontal momentum due to viscosity

into the sidewall boundary layers. We now justify this assumption.
The ratio R of horizontal to vertical flux of horizontal momentum is

R =
ν∂2u/∂x2

ν∂2u/∂y2
. (46)

If the sidewall boundary-layer thickness is of O(δ) and the shear-layer depth is of
O(m−1), the volume-averaged ratio of horizontal to vertical flux of momentum is

R̄ ∼ O
(

1

m2δB

)
, (47)

where R̄ denotes averaging of R from (46) over a shear layer. We may estimate the
sidewall boundary-layer thickness as

δ ∼ (νT )1/2, (48)

where T is the timescale over which the boundary layer develops. This timescale is
determined by the background vertical advection V (y) in the tank, i.e. T ∼ O(m−1V−1).
Thus, (47) becomes

R̄(y) ∼ O
([

V (y)

νB2m3(y)

]1/2
)
. (49)
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The relative dissipation in the sidewall boundary layers is greatest at y = 0, where
the vertical advection V (y) and the vertical wavenumber m(y) take maximum and
minimum values, respectively. The value of R̄(0) calculated from (49) for experiments
1–12 varies in the range O(10−1)–O(2), with values in excess of one being obtained
for experiments 3, 4, 7 and 8. Hence, the momentum flux into the sidewall boundary
layers is expected to be less than, or comparable to, the vertical momentum flux in the
vicinity of the tank bottom. Even in experiments 3, 4, 7 and 8, however, the neglect
of the sidewall boundary layers may be justified on the basis that dissipation in the
lower portion of the tank is very weak in absolute terms (see observations in figure
4(a) and prediction in figure 17). The rate at which horizontal momentum decreases
with height increases as the vertical advection V (y) decreases. Thus, the absolute
dissipation in the upper portion of the tank is greater because the residence time of
fluid there is greater. In addition the dissipation in the upper portion of the tank is
due primarily to the vertical flux of horizontal momentum since R̄(y)� 1 there. As
y increases, m(y) increases and V (y) decreases: by (49) R̄(y)/R̄(0) ≈ 0.5 at y = 0.25
and R̄(y)/R̄(0) < 0.2 by y = 0.5.
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